Solutions to an inverse monic quadratic eigenvalue problem
نویسندگان
چکیده
منابع مشابه
Solutions to a quadratic inverse eigenvalue problem
In this paper, we consider the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M,C, and K of size n× n, with (M,C,K) / = 0, so that the quadratic matrix polynomial Q(λ) = λ2M + λC +K has m (n < m 2n) prescribed eigenpairs. It is shown that, for almost all prescribed eigenpairs, the QIEP has a solution with M nonsingular if m < m∗, and has only solutions with ...
متن کاملOn the Inverse Symmetric Quadratic Eigenvalue Problem
The detailed spectral structure of symmetric, algebraic, quadratic eigenvalue problems has been developed recently. In this paper we take advantage of these canonical forms to provide a detailed analysis of inverse problems of the form: construct the coefficient matrices from the spectral data including the classical eigenvalue/eigenvector data and sign characteristics for the real eigenvalues....
متن کاملAn Inverse Quadratic Eigenvalue Problem for Damped Structural Systems
We first give the representation of the general solution of the following inverse quadratic eigenvalue problem IQEP : given Λ diag{λ1, . . . , λp} ∈ Cp×p , X x1, . . . , xp ∈ Cn×p, and both Λ and X are closed under complex conjugation in the sense that λ2j λ2j−1 ∈ C, x2j x2j−1 ∈ C for j 1, . . . , l, and λk ∈ R, xk ∈ R for k 2l 1, . . . , p, find real-valued symmetric 2r 1 -diagonal matrices M,...
متن کاملGeneral Solutions for a Class of Inverse Quadratic Eigenvalue Problems
Based on various matrix decompositions, we compare different techniques for solving the inverse quadratic eigenvalue problem, where n× n real symmetric matrices M , C and K are constructed so that the quadratic pencil Q(λ) = λM + λC + K yields good approximations for the given k eigenpairs. We discuss the case where M is positive definite for 1≤ k ≤ n, and a general solution to this problem for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2011
ISSN: 0024-3795
DOI: 10.1016/j.laa.2010.06.030